4. A force of 2.1 N is exerted on a 7.0 g rifle bullet. What is the bullet's acceleration?

$$F = ma$$

$$a = \frac{F}{m}$$

$$a = \frac{2.1 N}{7.0 g}$$

$$a = \frac{2.1 \frac{kg * m}{s^2}}{7.0 \ g}$$

$$a = \frac{2.1 \frac{kg * m}{s^2}}{7.0 g} \times 1000 g$$

$a = \frac{2.1 \frac{m}{5^2}}{7.00} \times 1,000$

$$= 3\overline{0}0 \frac{m}{s^2}$$

9. What is the weight in newtons of a 120 lbs person?

$$W = mg$$

$$W = m \times 9.80 \frac{m}{s^2}$$

$$W = 12\overline{0}lbs \times \frac{1kg}{2.20lbs} \times 9.80\frac{m}{s^2}$$

$$W = 535 \frac{kg * m}{s^2}$$

$$W = 535 Newtons$$

$$W = 535 N$$

21. Two ice skaters stand together as illustrated below. They "push off" and travel directly away from each other, the boy with a velocity of 0.50 m/s. If the boy weights 735 N and the girl $49\overline{0}$ N, what is the girl's velocity after pushing off? (Consider the ice to be frictionless.)

$$p_{initial} = p_{final}$$

$$p_{initial} = m_{boy} v_{boy} + m_{girl} v_{gir}$$

(Initially, both their velocities are zero)

$$p_{initial} = 0$$

$$p_{initial} = 0$$

$$p_{final} = m_{boy} v_{boy} + m_{girl} v_{girl}$$

$$0 = m_{boy}v_{boy} + m_{girl}v_{girl}$$

$$m_{boy}v_{boy} = -m_{girl}v_{girl}$$

$$W_{boy} = m_{boy}g$$

(Find the mass of the boy)

$$W_{boy} = m_{boy} x 9.80 \frac{m}{s^2}$$

$$735 N = m_{boy} x 9.80 \frac{m}{s^2}$$

$$m_{boy} = 75.0 \ kg$$

$$W_{girl} = m_{girl}g$$

(Find the mass of the girl)

$$W_{girl} = m_{girl} x 9.80 \frac{m}{s^2}$$

$$49\overline{0} \ N = m_{girl} \ x \ 9.80 \ \frac{m}{s^2}$$

$$m_{girl} = 75.0 kg$$

$$m_{boy}v_{boy} = -m_{girl}v_{gir}$$

(Use the formula)

$$75.0 \, kg \, x \, 0.50 \, \frac{m}{s} - 50.0 \, kg \, x \, v_{girl}$$

$$v_{girl} = -0.75 \frac{m}{s}$$